An Improved QAA-Based Method for Monitoring Water Clarity of Honghu Lake Using Landsat TM, ETM+ and OLI Data

نویسندگان

چکیده

Secchi disk depth (ZSD) is used to quantify water clarity as an important water-quality parameter, and one of the most mechanistic models for ZSD quasi-analytical algorithm (QAA), which latest version QAA_v6. There are two in QAA clear turbid waters (referred QAA_clear QAA_turbid). QAA_v6 switches between by setting a threshold value remote sensing reflectance (Rrs, sr−1) at selected reference band 656 nm. However, some researchers found that this or does not apply many inland lakes. In Honghu Lake, Rrs (656) (Rrs nm) whole lake less than 0.0015 sr−1; therefore, only QAA_turbid can be applied. Moreover, we resulted overestimation while significant underestimations. The lakes usually continuously vary water. We proposed hypothesis transition evenly, rather being distinguished value, developed model combined according our assumption. This simulated process continuous change clarity. results showed had better performance with RMSE reduced from 0.5 0.28, MAE 0.43 0.21, bias −0.4 −0.05 m compared applied QAA_Honghu Landsat TM, ETM+, OLI data obtained 205 maps high spatial resolution Lake. were consistent existing situ measurements. From 1987–2020, Lake overall downward trend distinct seasonal pattern.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drought Effects on Vegetation Changes in Kashkan Basin of Lorestan Using ETM + and OLI Landsat Data

Background and objectives: Vegetation is one of the most important elements of an ecosystem, which is directly related to the moisture conditions of the land. Estimation of plant drought indices such as VCI, TCI, VHI is an effective tool to assess the effects of drought by calculating NDVI. In this regard, several studies have been conducted that explain how to calculate and use these indicator...

متن کامل

LakeTime: Automated Seasonal Scene Selection for Global Lake Mapping Using Landsat ETM+ and OLI

The Landsat series of satellites provide a nearly continuous, high resolution data record of the Earth surface from the early 1970s through to the present. The public release of the entire Landsat archive, free of charge, along with modern computing capacity, has enabled Earth monitoring at the global scale with high spatial resolution. With the large data volume and seasonality varying across ...

متن کامل

A model-based approach for mapping rangelands covers using Landsat TM image data

Empirical models are important tools for relating field-measured biophysical variables to remotely sensed data. Regression analysis has been a popular empirical method of linking these two types of data to estimate variables such as biomass, percent vegetation canopy cover, and bare soil. This study was conducted in a semi-arid rangeland ecosystem of Qazvin province, Iran. This paper presents t...

متن کامل

Improved Water Classification Using an Application-oriented Processing of Landsat ETM+ and ALOS PALSAR

The aim of this study is to extract water body using the integrated features of Landsat ETM+ and ALOS PALSAR data. Water body extracted from Landsat ETM+ tends to lose smaller water bodies like small rivers and ponds. Besides, water area with plant (lotus) is difficult to recognize. ALOS PALSAR data have a much higher resolution, capable of extracting almost all the water bodies without confusi...

متن کامل

Detection of Drought Effects Change on Isfahan City Green Vegetation Cover by Using Landsat TM and ETM+ Data

احمد مختاری1، ناهید کاوه‌زاده 2، فرزاد شنبه دستجردی3 1- عضو هیات علمی مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان[email protected] 2 -کارشناس مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان 3-کارشناس ارشد مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان چکیده امروزه استفاده از سامانه‌های سنجش از دور جزء لاینفک مطالعات زیست محیطی و از اسناد معتبر در بررسی‌های اقتصاد محیط زیست، توسعه سامانه‌های دقیق‌ت...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2072-4292']

DOI: https://doi.org/10.3390/rs14153798